Type III secretion decreases bacterial and host survival following phagocytosis of Yersinia pseudotuberculosis by macrophages.

نویسندگان

  • Yue Zhang
  • James Murtha
  • Margaret A Roberts
  • Richard M Siegel
  • James B Bliska
چکیده

Yersinia pseudotuberculosis uses a plasmid (pYV)-encoded type III secretion system (T3SS) to translocate a set of effectors called Yops into infected host cells. YopJ functions to induce apoptosis, and YopT, YopE, and YopH act to antagonize phagocytosis in macrophages. Because Yops do not completely block phagocytosis and Y. pseudotuberculosis can replicate in macrophages, it is important to determine if the T3SS modulates host responses to intracellular bacteria. Isogenic pYV-cured, pYV(+) wild-type, and yop mutant Y. pseudotuberculosis strains were allowed to infect bone marrow-derived murine macrophages at a low multiplicity of infection under conditions in which the survival of extracellular bacteria was prevented. Phagocytosis, the intracellular survival of the bacteria, and the apoptosis of the infected macrophages were analyzed. Forty percent of cell-associated wild-type bacteria were intracellular after a 20-min infection, allowing the study of the macrophage response to internalized pYV(+) Y. pseudotuberculosis. Interestingly, macrophages restricted survival of pYV(+) but not pYV-cured or DeltayopB Y. pseudotuberculosis within phagosomes: only a small fraction of the pYV(+) bacteria internalized replicated by 24 h. In addition, approximately 20% of macrophages infected with wild-type pYV(+) Y. pseudotuberculosis died of apoptosis after 20 h. Analysis of yop mutants expressing catalytically inactive effectors revealed that YopJ was important for apoptosis, while a role for YopE, YopH, and YopT in modulating macrophage responses to intracellular bacteria could not be identified. Apoptosis was reduced in Toll-like receptor 4-deficient macrophages, indicating that cell death required signaling through this receptor. Treatment of macrophages harboring intracellular pYV(+) Y. pseudotuberculosis with chloramphenicol reduced apoptosis, indicating that the de novo bacterial protein synthesis was necessary for cell death. Our finding that the presence of a functional T3SS impacts the survival of both bacterium and host following phagocytosis of Y. pseudotuberculosis suggests new roles for the T3SS in Yersinia pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type III secretion system-dependent translocation of ectopically expressed Yop effectors into macrophages by intracellular Yersinia pseudotuberculosis.

Yersinia pseudotuberculosis is a Gram-negative bacterial pathogen. Virulence in Y. pseudotuberculosis requires the plasmid-encoded Ysc type III secretion system (T3SS), which functions to translocate a set of effectors called Yops into infected host cells. The effectors function to antagonize phagocytosis (e.g., YopH) or to induce apoptosis (YopJ) in macrophages infected with Y. pseudotuberculo...

متن کامل

A Role for the SmpB-SsrA System in Yersinia pseudotuberculosis Pathogenesis

Yersinia utilizes a sophisticated type III secretion system to enhance its chances of survival and to overcome the host immune system. SmpB (small protein B) and SsrA (small stable RNA A) are components of a unique bacterial translational control system that help maintain the bacterial translational machinery in a fully operational state. We have found that loss of the SmpB-SsrA function causes...

متن کامل

Pathogenic Yersinia Promotes Its Survival by Creating an Acidic Fluid-Accessible Compartment on the Macrophage Surface

Microbial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-...

متن کامل

Attenuated Yersinia pseudotuberculosis carrier vaccine for simultaneous antigen-specific CD4 and CD8 T-cell induction.

Yersinia pseudotuberculosis employs a type III secretion system for targeting of several virulence factors directly to the cytosol of eukaryotic cells. This protein translocation mechanism mediates the ability of Yersinia to resist phagocytosis and is required for sustained extracellular bacterial replication. In the present study, the Yersinia outer protein E (YopE) was used as a carrier molec...

متن کامل

The GAP Activity of Type III Effector YopE Triggers Killing of Yersinia in Macrophages

The mammalian immune system has the ability to discriminate between pathogens and innocuous microbes by detecting conserved molecular patterns. In addition to conserved microbial patterns, the mammalian immune system may recognize distinct pathogen-induced processes through a mechanism which is poorly understood. Previous studies have shown that a type III secretion system (T3SS) in Yersinia ps...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 76 9  شماره 

صفحات  -

تاریخ انتشار 2008